![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Edgewater MD (SPX) Dec 03, 2021
Coastal plants and animals have found a new way to survive in the open ocean-by colonizing plastic pollution. A new commentary published Dec. 2 in Nature Communications reports coastal species growing on trash hundreds of miles out to sea in the North Pacific Subtropical Gyre, more commonly known as the "Great Pacific Garbage Patch." "The issues of plastic go beyond just ingestion and entanglement," said Linsey Haram, lead author of the article and former postdoctoral fellow at the Smithsonian Environmental Research Center (SERC). "It's creating opportunities for coastal species' biogeography to greatly expand beyond what we previously thought was possible." Gyres of ocean plastic form when surface currents drive plastic pollution from the coasts into regions where rotating currents trap the floating objects, which accumulate over time. The world has at least five plastic-infested gyres, or "garbage patches." The North Pacific Subtropical Gyre, between California and Hawai'i, holds the most floating plastic, with an estimated 79,000 metric tons of plastic floating in a region over 610,000 square miles. While "garbage patch" is a misnomer-much of the pollution consists of microplastics, too small for the naked eye to see-floating debris like nets, buoys and bottles also get swept into the gyres, carrying organisms from their coastal homes with them.
A New Open Ocean For this discovery, Haram teamed up with Ocean Voyages Institute, a nonprofit that collects plastic pollution on sailing expeditions, and a pair of oceanographers from the University of Hawai'i at Manoa. The oceanographers, Jan Hafner and Nikolai Maximenko, created models that could predict where plastic was most likely to pile up in the North Pacific Subtropical Gyre. They shared that information with Ocean Voyages Institute. One advantage of the institute, Haram-now a fellow at the American Association for the Advancement of Science-pointed out, is the low carbon footprint of its vessels. "It can take a lot of energy to get out to the middle of the ocean with a gas-powered boat," she said. "So they use large-cargo sailing vessels to go around and remove plastics from the open ocean." During the first year of the COVID-19 pandemic, Ocean Voyages Institute founder Mary Crowley and her team managed to collect a record-breaking 103 tons of plastics and other debris from the North Pacific Subtropical Gyre. She shipped some of those samples to SERC's Marine Invasions Lab. There, Haram analyzed the species that had colonized them. She found many coastal species-including anemones, hydroids and shrimp-like amphipods-not only surviving, but thriving, on marine plastic.
A Sea of Questions "The open ocean has not been habitable for coastal organisms until now," said SERC senior scientist Greg Ruiz, who heads the Marine Invasions Lab where Haram worked. "Partly because of habitat limitation-there wasn't plastic there in the past-and partly, we thought, because it was a food desert." The new discovery shows that both ideas do not always hold true. Plastic is providing the habitat. And somehow, coastal rafters are finding food. Ruiz said scientists are still speculating exactly how-whether they drift into existing hot spots of productivity in the gyre, or because the plastic itself acts like a reef attracting more food sources. Now, scientists have another shift to wrestle with: How these coastal rafters could shake up the environment. The open ocean has plenty of its own native species, which also colonize floating debris. The arrival of new coastal neighbors could disrupt ocean ecosystems that have remained undisturbed for millennia. "Coastal species are directly competing with these oceanic rafters," Haram said. "They're competing for space. They're competing for resources. And those interactions are very poorly understood." And then there is the invasive-species threat. Scientists have already seen that begin to play out with Japanese tsunami debris, which carried organisms from Japan to North America. Vast colonies of coastal species floating in the open ocean for years at a time could act as a new reservoir, giving coastal rafters more opportunities to invade new coastlines. "Those other coastlines are not just urban centers....That opportunity extends to more remote areas, protected areas, Hawaiian Islands, national parks, marine protected areas," Ruiz said. The authors still do not know how common these "neopelagic" communities are, whether they can sustain themselves or if they even exist outside the North Pacific Subtropical Gyre. But the world's dependence on plastic continues to climb. Scientists estimate cumulative global plastic waste could reach over 25 billion metric tons by 2050. With fiercer and more frequent storms on the horizon thanks to climate change, the authors expect even more of that plastic will get pushed out to sea. Colonies of coastal rafters on the high seas will likely only grow. This long-overlooked side effect of plastic pollution, the authors said, could soon transform life on land and in the sea.
Research Report: "Emergence of a neopelagic community through the establishment of coastal species on the high seas"
![]() ![]() Study outlines challenges to ongoing clean-up of burnt and unburnt nurdles along Sri Lanka's coastline Woods Hole MA (SPX) Dec 01, 2021 When a fire broke out on the deck of the M/V XPress Pearl cargo ship on May 20, 2021, an estimated 70-75 billion pellets of preproduction plastic material, known as nurdles, spilled into the ocean and along the Sri Lankan coastline. That spill of about 1,500 tons of nurdles, many of which were burnt by the fire, has threatened marine life and poses a complex clean-up challenge. A new peer-reviewed study characterizes how the fire modified the physical and chemical properties of the nurdles and pro ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |