![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Beijing, China (SPX) May 14, 2018
Western China and central Asia are positioned centrally along the Millennium Silk Road--a core region bridging the east and west. Understanding the potential changes in climate over this core region is important to the successful implementation of "Belt and Road Initiative" (a US$1 trillion regional investment in infrastructure). In a recently published study in Atmospheric and Oceanic Science Letters, scientists from the Institute of Atmospheric Physics, Chinese Academy of Sciences, projected both mean and extreme climate changes using the ensemble mean of CMIP5 models. The comparison of mean and extreme climate changes under 1.5C and 2C global warming scenarios highlights the impacts that can be avoided by achieving global warming of half a degree lower. The results show a warming of about 1.5C, 2.9C, 3.6C and 6.0C under the RCP2.6, 4.5, 6.0 and 8.5 scenarios, respectively, by the end of the 21st century, with respect to the 1986-2005 baseline period. Meanwhile, the annual mean precipitation amount increases consistently across all RCPs, with an increase by about 14% with respect to 1986-2005 under RCP8.5. The warming over the Millennium Silk Road region reaches 1.5C before 2020 under all the emission scenarios. The 2020s (2030s) see a 2C warming under the RCP8.5 (RCP4.5) scenario. "Our study suggests that half a degree less global warming will result in significant avoided impacts in the Silk Road core region," says the lead author Prof. Tianjun Zhou. According to the study, half a degree less global warming will avoid a further warming of 0.73C (with an interquartile range of 0.49?-0.94?), as well as increasing the number of extreme heat events by 4.2 days, at a cost of a lower increase of 2.72% (0.47%-3.82%) in annual precipitation. The change in consecutive dry days is region-dependent.
![]() ![]() In ancient rocks, scientists see a climate cycle working across deep time New York NY (SPX) May 08, 2018 Scientists drilling deep into ancient rocks in the Arizona desert say they have documented a gradual shift in Earth's orbit that repeats regularly every 405,000 years, playing a role in natural climate swings. Astrophysicists have long hypothesized that the cycle exists based on calculations of celestial mechanics, but the authors of the new research have found the first verifiable physical evidence. They showed that the cycle has been stable for hundreds of millions of years, from before the rise ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |