. | . |
Rapid marsh bank sediment build up does not equate land loss resilience by Staff Writers Baton Rouge LA (SPX) May 12, 2016
When the banks of a marsh channel accumulate sediment at a faster rate than relative sea level rise, it may seem like the marsh is resilient. However, a new study published in Geology proposes a new framework to look at sediment fluxes in marsh channels that takes into account the natural process of sediment recycling. Understanding how sediments are transported within salt marshes is critical to predict the effect that processes such as nutrient loading, sea-level rise and sediment supply have on marsh erosion. Researchers from LSU and Boston University studied two channels on Plum Island Sound located about an hour north of Boston, Mass. They built a computer model to simulate cross sections of the channels and the adjacent marsh. "Our results indicate that marsh resilience may have been overestimated when vertical accretion rates were higher than relative sea level rise because sediments are naturally recycled within channels," said LSU Department of Oceanography and Coastal Sciences Assistant Professor Giulio Mariotti, who is the lead author of the paper. In a balanced marsh ecosystem, sediment builds up on the banks of the channel while the slope sloughs off back into the marsh, which helps the channel maintain its width and depth. A similar process occurs in river channels. Mariotti took this principle and applied it to salt marsh channels. However, other factors can disrupt the natural equilibrium of the marsh. For example, a previous study published in Nature studied the effects of nutrients in one channel and found that it weakened the banks of the channel. Mariotti reinterpreted data from this study in the new framework and saw that although nutrients reduced the channel bank's strength, it does not cause significant marsh loss as the previous study suggested. This new interpretation shows actually that the weakening of the banks increases the low marsh area at the expense of the high marsh. Mariotti emphasizes that what is observed on the banks of the channel marsh is not indicative of what occurs in the interior of the marsh, which comprises about 90 percent of the marsh ecosystem. Therefore, studies using data on sedimentation rates from marsh channels would provide a biased outlook for overall marsh loss. "The marsh channels exhibit this flow cycle and equilibrium, but the interior responds differently," he said.
Related Links Louisiana State University Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |