![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Los Angeles CA (SPX) Feb 06, 2018
USC scientists have unlocked a new, more efficient pathway for converting methane - a potent gas contributing to climate change - directly into basic chemicals for manufacturing plastics, agrochemicals and pharmaceuticals. In research published on Dec. 4 in the Journal of the American Chemical Society, chemists at USC Loker Hydrocarbon Research Institute say they have found a way to help to utilize this abundant and dangerous greenhouse gas, which is generally burnt or flared to produce energy. Among common greenhouse gases, carbon dioxide is often cited as the largest culprit for trapping heat on earth, contributing to climate change. However, it is not the most potent. That distinction belongs to methane. According to the Intergovernmental Panel on Climate Change, methane traps heat and warms the planet 86 times more than carbon dioxide over a 20-year horizon.
More fuel, fewer emissions, reduced energy use This simple method of converting methane directly to ethylene and propylene, or olefins, would replace what are traditionally difficult, expensive, and inefficient processes that add greenhouse gases to the atmosphere. The majority of ethylene and propylene is produced from petroleum oil and shale liquid cracking, which consumes enormous amounts of energy. When USC's first Nobel Prize winner, George Olah, converted methane to olefins in 1985, the process required three steps. Since then, researchers have reduced it to two steps, but the Loker team is the first to realize the conversion with a single catalyst based on zeolites. "Contact time is the key for this effective and simple catalyst to produce usable fuel from methane. In real estate, they say, location, location, location. In chemistry, it is all about condition, condition, condition," said Prakash. Global methane emissions have surged since 2007 and output is particularly bad in the United States. According to a recent Harvard University study, the United States could be solely responsible for as much as 60 percent of the global growth in human-caused atmospheric methane emissions during this century. Contributing to the global surge is the increased supply of livestock and rice fields in countries like India and China, the two leaders in total methane output, according to the World Bank.
'If carbon is the problem, carbon has to be the solution' Shale fracking and other resource extraction techniques are increasing natural gas reserves, and the Loker scientists believe methane may soon become the most popular of all raw materials for producing petrochemical products. About 30 years ago, Prakash and his mentor Olah first began refining the concept of "The Methanol Economy," a host of methanol-based solutions mitigating the production cycle of the greenhouse gases that are accelerating climate change. While similar in structure and name, methane is not directly interchangeable with methanol, although most methanol is synthetically produced from methane. Methane is a naturally occurring gas and the simplest one-carbon compound containing hydrocarbon. By further reducing the steps necessary to efficiently convert methane to olefins, the scientists at Loker may have brought us that much closer to realizing one of the original steps laid out in "The Methanol Economy." "If carbon is the problem, carbon has to be the solution. There is plenty of methane to go around in the world and it is become easier and safer to turn it into products that we can actually use,'" said Prakash.
![]() ![]() Most of last 11,000 years cooler than past decade in North America, Europe Laramie WY (SPX) Feb 01, 2018 University of Wyoming researchers led a climate study that determined recent temperatures across Europe and North America appear to have few, if any, precedent in the past 11,000 years. The study revealed important natural fluctuations in climate have occurred over past millennia, which would have naturally led to climatic cooling today in the absence of human activity. Bryan Shuman, a UW professor in the Department of Geology and Geophysics, and Jeremiah Marsicek, a recent UW Ph.D. graduate ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |