![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Minneapolis MN (SPX) Feb 10, 2016
At the climate talks in Paris, all attention was focused on how humanity can reduce climate change by reducing carbon emissions, or by increasing carbon uptake. Forests are an important carbon sink. While most attention has focused on old-growth tropical forests, it turns out that secondary forests that re-grow after forest clearance or agricultural abandonment can sequester large amounts of carbon. Is this a forgotten sink? A large international team of forest ecologists including U of M ecologist Jennifer Powers and University of Minnesota graduate student Justin Becknell sought to answer that question by analyzing recovery of aboveground biomass using 1,500 forest plots and 45 sites across Latin America. The researchers found that carbon uptake in these new-growth tropical forests was surprisingly robust. Their findings will appear in the print edition of the journal Nature February 11, 2016. "Secondary forests are literally the forests of the future," says Powers. "Our study focuses much-needed attention on overlooked tropical secondary forests, which now comprise more than half of all tropical forests." Lourens Poorter, lead author of the study, notes that after 20 years, these forests have accumulated enough biomass to an uptake 3.05 ton carbon per ha per year - 11 times the uptake rate of old-growth forests. Second-growth forests differ dramatically in their resilience; in 20 years between 20 and 225 tons of biomass has recovered. Biomass recovery is high in areas with high rainfall and water availability throughout the year, whereas soil fertility or the amount of forest cover in the surrounding landscape were less important. "We also used these data to produce a potential biomass recovery map for Latin America," says co-author Danae Rozendaal. "Regional and national policy makers can use this information to identify areas that should be conserved, for instance because they have a slow recovery and are more difficult to restore, or to identify areas with fast recovery, where forest regrowth or reforestation has a high chance of success and a high carbon sequestration potential." "This study firmly establishes the potential role that tropical secondary forests play in the global carbon cycle, and underscores that policies aimed at mitigating climate change should both reduce deforestation and promote forest regrowth," Powers says. Jennifer Powers is an associate professor in the College of Biological Sciences with a joint appointment in the Department of Ecology, Evolution and Behavior and the Department of Plant Biology.
Related Links University of Minnesota Forestry News - Global and Local News, Science and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |