![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers New York NY (SPX) Dec 03, 2018
Researchers conducting a 5-year-long study examining snow cover in a northern hardwood forest region found that projected changes in climate could lead to a 95 percent reduction of deep-insulating snowpack in forest areas across the northeastern United States by the end of the 21st century. The loss of snowpack would likely result in a steep reduction of forests' ability to store climate-changing carbon dioxide and filter pollutants from the air and water. The new findings in Global Change Biology, highlight a growing understanding of the broad impact of climate change across seasons on forest ecosystems, according to scientists who leveraged six decades of data showing declining winter snowpack at Hubbard Brook's forest. The 7,800-acre research forest in New Hampshire is heavily populated by sugar maple and yellow birch trees, and has been used for over 60 years to study changes in northern hardwood forests - an ecosystem covering over 54 million acres and stretching from Minnesota to southeastern Canada. "We know global warming is causing the winter snowpack to develop later and melt earlier," said the paper's first author Andrew Reinmann, an assistant professor and researcher with the Environmental Science Initiative at the Advanced Science Research Center (ASRC) at The Graduate Center, CUNY, and with Hunter College's Department of Geography. "Our study advances our understanding of the long-term effects of this trend on northern hardwood forests - which are critical to North America's environmental health and several industries. The experiments we conducted suggest snowpack declines result in more severe soil freezing that damages and kills tree roots, increases losses of nutrients from the forest and significantly reduces growth of the iconic sugar maple trees." The researchers' 5-year-long experiment consisted of removing snowpack from designated plots during the first 4-6 weeks of winter each year between 2008 and 2012, and then comparing the resulting condition of the soil and trees (all sugar maples) in those plots to the soil and trees in adjacent plots with natural snowpack. Their analysis found that soil frost depth reached over 30 centimeters in areas where snow cover had been removed compared to roughly 5 centimeters at control plots. The severe frost caused damage to tree roots that triggered a cascade of responses, including reduced nutrient uptake by trees, shorter branch growth, loss of nitrogen from soils into nearby waterways, and decreases in soil insect diversity and abundance. Scientists collected sample cores from sugar maple trees on their research plots and measured the width of the cores' rings to reconstruct growth rates. They found that growth declined by more than 40 percent in response to snow removal and increased soil freezing. The trees also were unable to rebound even after snowpack removal ceased. "These experiments demonstrate the significant impact that changes in winter climate have on a variety of environmental factors, including forest growth, carbon sequestration, soil nutrients and air and water quality," Reinmann said. "Left unabated, these changes in climate could have a detrimental impact on the forests of the region and the livelihoods of the people who rely on them for recreation and industries such as tourism, skiing, snowmobiling, timber and maple syrup production."
![]() ![]() In Lebanon, climate change devours ancient cedar trees Tannourine, Lebanon (AFP) Nov 28, 2018 High up in Lebanon's mountains, the lifeless grey trunks of dead cedar trees stand stark in the deep green forest, witnesses of the climate change that has ravaged them. Often dubbed "Cedars of God", the tall evergreens hark back millenia and are a source of great pride and a national icon in the small Mediterranean country. The cedar tree, with its majestic horizontal branches, graces the nation's flag and its bank notes. But as temperatures rise, and rain and snowfall decrease, Lebanon's g ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |