![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers New Orleans LA (SPX) Dec 15, 2021
New research reveals a previously underappreciated way old-growth forests have been recycling and storing carbon: treetop soils. Branches in forest canopies can hold caches of soil that may store substantially more carbon than soils on the ground beneath them, and scientists are just beginning to understand how much carbon canopy soils - which exist on every continent except Antarctica - could store. The new research on these unique soils, being presented on Wednesday, 15 December at 5:00 p.m. CST at AGU Fall Meeting 2021, marks the first attempt to quantify carbon capture by canopy soils. The work highlights another way old-growth forests are rich, complex ecosystems that cannot be quickly replaced by replanting forests. Tree branches collect fallen tree leaves and other organic material over hundreds of years, like the ground does. On top of the branches, the plant litter decomposes as it accumulates, forming a carbon-rich layer that can be several inches thick. The researchers climbed up into the rainforest canopy in Costa Rica, instruments in hand, to find out just how much carbon canopy soils can contain. Active carbon, a short-term storage pool of organic carbon, was three times higher in canopy soil compared to soils underfoot, the researchers found. "We knew these would be really organic-rich soils, but we didn't expect the extremely large amount of carbon compared to mineral soils," said Hannah Connuck, an undergraduate researcher at Franklin and Marshall College who will be presenting the study results. The researchers are still calculating the total concentration of organic carbon at their research site, but other research has found canopy soils to have up to 10 times higher concentrations of organic carbon, according to soil scientist Peyton Smith, a study co-author and Connuck's soil science mentor at Texas A and M University. Connuck and Smith also measured how much carbon dioxide was being released by microbial organisms living in the canopy soils, which is critical for knowing whether soils are storing or releasing carbon overall. They found that even though the microbes were releasing higher volumes of carbon dioxide than ground soils, their rate of carbon storage was rapid enough to compensate, likely making canopy soils a net carbon sink that has not been considered in carbon models yet. "It could be a substantial carbon sink, and we need to account for it," Smith said. Like other soils, canopy soils take a long time to form, and therefore take a long time for a forest to recover if an area of old growth is cut down. The soils also host unique microbiomes, including highly diverse microbial organisms and canopy-specific plants like epiphytic orchids. "It's a good argument for keeping primary and other old-growth forests around, rather than harvesting and replanting with secondary growth forests," Connuck said.
![]() ![]() England tree scheme takes root amid climate emergency Totnes, United Kingdom (AFP) Dec 9, 2021 Hunched over and heads down in concentration, three workers at Moor Trees, a nursery in southwestern England, shell red seed pods and toss them one by one into a bucket. The seeds are placed in pots and covered in soil, and those which germinate over the next two years will then be planted in the ground and hopefully grow into full-grown trees. With the ominous threat of the climate emergency, tree planting has become a fashionable choice for governments and companies looking to capture pollutin ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |