![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Zurich, Switzerland (SPX) Oct 15, 2018
In 2009, BEF-China began as a unique forest biodiversity experiment in collaboration between institutions in China, Germany and Switzerland. The large-scale project investigated the importance of tree species richness for the good functioning of forest ecosystems. Stands of trees comprising different numbers of species were planted - from monocultures to highly species-rich plots with 16 different tree species on an area of 670 square meter. After eight years, such species-rich forest plots stored an average of 32 tons of carbon per hectare in aboveground biomass. By contrast, monocultures averaged only 12 tons of carbon per hectare - less than half as much. During photosynthesis, the plants absorb carbon dioxide from the atmosphere and convert the carbon to biomass. When a forest stores more carbon, this helps reduce greenhouse gases and at the same time also indicates high forest productivity.
Biodiverse forests are more productive "In the forest biodiversity experiment, biomass increased just as quickly with species richness as it did in the meadow ecosystems. As a result, even after just four years, there were clear differences between the monocultures and the species-rich forests," explains Prof. Helge Bruelheide of the Martin Luther University Halle-Wittenberg, co-director of the German Centre for Integrative Biodiversity Research (iDiv), which together with the Institute of Botany of the Chinese Adacemy of Sciences oversaw the field experiments. These differences grew continuously over further four years. "These findings have great ecological and economic significance," says Prof. Bernhard Schmid of the University of Zurich, senior author in the more than 60-strong writing team of the current publication in Science. A previous study already found a positive correlation between biodiversity and carbon storage. However, it was based on simple comparison of natural plots varying in species richness. "Therefore, it was impossible to conclude that higher biodiversity was the cause of the higher productivity. But now we have reached the same conclusion with an experiment under controlled conditions: a forest with a large number of tree species is more productive than a monoculture," adds Prof. Dr. Keping Ma of the Chinese Academy of Sciences and co-manager of the project.
Higher productivity, better climate protection "Our new study shows that forests are not all the same when it comes to climate protection: monocultures achieve not even half of the desired ecosystem service. The full level of carbon sequestration and thus mitigation of global warming can only be achieved with a mix of species. In addition, species-rich forests also contribute towards protecting the world's threatened biodiversity," ex-plains Bernhard Schmid. "Unfortunately, there's still a widespread misconception that productivity and biodiversity are mutually exclusive, but the opposite is true." Species-rich forests are also less vulnerable when it comes to diseases or extreme weather events, which are becoming increasingly frequent as a result of climate change. If the effects observed in the experiment are extrapolated to the world's existing forests, it can be concluded that a 10% decline in tree species would lead to production losses of 20 billion US dollars, worldwide, per year. This result shows that, according to the researchers, reforestation with a mix of different species also pays off economically.
Research Report: Impacts of species richness on productivity in a large-scale subtropical forest experiment
![]() ![]() Secondary forests have short lifespans St Louis MO (SPX) Oct 08, 2018 Secondary forests, or forests that have regrown after agriculture use, only last an average of 20 years, according to a recently released scientific paper. The finding presents a major problem for large-scale restoration policy, which often focuses on commitments to restore a certain number of hectares by a given year. But the benefits of restoration depend on those forests persisting. It takes much longer than 20 years for a secondary forest to absorb large amounts of carbon, or to provide habita ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |