. Earth Science News .
SHAKE AND BLOW
Stanford study casts doubt on the predictive value of earthquake foreshocks
by Staff Writers
Stanford CA (SPX) Jun 07, 2018

illustration only

No one can predict when or where an earthquake will strike, but in 2011 scientists thought they had evidence that tiny underground tremors called foreshocks could provide important clues. If true, it suggested seismologists could one day warn people of impending temblors.

But a new study published in the online June 4 issue of Nature Geoscience by scientists at Stanford University and Bo?azici University in Turkey has cast doubt on those earlier findings and on the predictive value of foreshocks.

The previous evidence came from a 7.6 magnitude earthquake in 1999 near Izmit, Turkey, that killed more than 17,000 people. A 2011 study in the journal Science found that the deadly quake was preceded by a series of small foreshocks - potential warning signs that a big seismic event was imminent.

"We've gone back to the Izmit earthquake and applied new techniques looking at seismic data that weren't available in 2011," said lead author William Ellsworth, a professor (research) of geophysics at Stanford School of Earth, Energy and Environmental Sciences.

"We found that the foreshocks were just like other small earthquakes. There was nothing diagnostic in their occurrence that would suggest that a major earthquake was about to happen."

"We'd all like to find a scientifically valid way to warn the public before an earthquake begins," said co-author Fatih Bulut, an assistant professor of geodesy at Bo?azici University's Kandilli Observatory and Earthquake Research Institute. "Unfortunately, our study doesn't lead to new optimism about the science of earthquake prediction."

How do earthquakes begin?
Scientists including Ellsworth have proposed two ideas of how major earthquakes form, one of which - if scientists can detect them - could warn of a larger quake.

"About half of all major earthquakes are preceded by smaller foreshocks," Ellsworth said. "But foreshocks only have predictive value if they can be distinguished from ordinary earthquakes."

One idea, known as the cascade model, suggests that foreshocks are ordinary earthquakes that travel along a fault, one quake triggering another one nearby. A series of smaller cascading quakes could randomly trigger a major earthquake, but could just as easily peter out. In this model, a series of small earthquakes wouldn't necessarily predict a major quake.

"It's a bit like dominos," Bulut said. "If you put dominos on a table at random and knock one over, it might trigger a second or third one to fall down, but the chain may stop. Sometimes you hit that magic one that causes the whole row to fall."

Another theory suggests that foreshocks are not ordinary seismic events but distinct signals of a pending earthquake driven by slow slip of the fault. In this model, foreshocks repeatedly rupture the same part of the fault, causing it to slowly slip and eventually trigger a large earthquake.

In the slow-slip model, repeating foreshocks emanating from the same location could be early warnings that a big quake is coming. The question had been whether scientists could detect a slow slip when it is happening and distinguish it from any other series of small earthquakes.

Earlier studies
In 2011, a team argued in Science that the foreshocks preceding the 1999 quake in Izmit were driven by slow slip, and could have been detected with the right equipment - the first evidence that foreshocks would be useful for predicting a major earthquake.

"That result has had a large influence in thinking about the question of whether foreshocks can be predictive," Ellsworth said.

The city of Izmit is located on the North Anatolian Fault, which stretches about 900 miles (1,500 kilometers) across Turkey. For the 2011 study, a team analyzed data from a single seismic station several miles from the earthquake epicenter, which ultimately recorded seismograms of 18 foreshocks occurring about 9 miles (15 kilometers) below the surface - very close to the where the larger earthquake began - and each with similar waveforms.

Those similarities led the authors to conclude that all of the foreshocks repeatedly broke the same spot on the fault, driven by slow slip that ultimately triggered the major earthquake. They concluded that monitoring similar events could provide timely warning that a big quake is imminent.

"The Science paper concluded that there was a lot of slow slip, and had we been there with the right instruments we might have seen it," Ellsworth said. "We decided to test that idea that the foreshocks were co-located."

Domino effect
Instead of relying on data from one seismic station, Ellsworth and Bulut analyzed seismograms recorded at nine additional stations during the 1999 earthquake.

With more stations, Ellsworth and Bulut identified a total of 26 foreshocks. None were identical, and the largest ones progressively moved from west to east along the fault. This finding is consistent with the cascade model, where an ordinary earthquake triggers another quake on a neighboring part of the fault, but doesn't necessarily predict a major quake.

Bulut and Ellsworth found no evidence that slow slip played a role in triggering the Izmit earthquake.

"The authors of the Science paper were quite optimistic, but what they proposed had happened did not happen," Ellsworth said.

What the researchers don't know is why this series of cascading foreshocks triggered a massive earthquake when so many others don't. Ellsworth said that without better seismic instrumentation, important challenges like our ability to predict earthquakes will remain.

"We're not giving up on foreshocks just because we currently can't tell them apart from other earthquakes," Ellsworth said.

"We want to understand if they have predictive value and if not, why not. To answer that question will require observations made close to the action, deep in the heart of the earthquake machine, not as we currently do from the surface where we're blind to changes deep underground."


Related Links
Stanford University
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SHAKE AND BLOW
Machine listening for earthquakes
New York NY (SPX) May 24, 2018
For all that seismologists have learned about earthquakes, new technologies show how much remains to be discovered. In a new study in Science Advances, researchers at Columbia University show that machine learning algorithms could pick out different types of earthquakes from three years of earthquake recordings at The Geysers in California, one of the world's oldest and largest geothermal reservoirs. The repeating patterns of earthquakes appear to match the seasonal rise and fall of water-injectio ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Peace needs at least 15 years: Colombian president

Sentinel-1 warns of refugee island flood risk

Seismometer readings could offer debris flow early warning

China floods to hit US economy: Climate effects through trade chains

SHAKE AND BLOW
Large-scale and sustainable 3D printing with the most ubiquitous natural material

Engineers convert commonly discarded material into high-performance adhesive

Zn-InsP6 complex can enhance excretion of radioactive strontium from the body

What can snakes teach us about engineering friction

SHAKE AND BLOW
Study suggests scientists can use microbial measurements to gauge river flow

Lebanon's spearfishers fight to preserve stocks

World's largest freshwater pearl goes for 320,000 euros

Hydropower in Cambodia could threaten food security of region

SHAKE AND BLOW
Ancient Greenland was much warmer than previously thought

Phosphorus nutrition can hasten plant and microbe growth in arid, high elevation sites

Trump administration moves to lift ban on bear baiting in Alaska

Canada, Denmark seek to settle Arctic island dispute

SHAKE AND BLOW
Alibaba shows off automated wine store in Hong Kong

Scientists boost crop production by 47 percent by speeding up photorespiration

Bayer to ditch Monsanto name after mega-merger

Sugarcane pest produces foam to protect itself from heat

SHAKE AND BLOW
Hurricanes are slowing down, causing more damage in coastal communities

Seven killed in storm Alberto flooding in Cuba

At least 99 dead as Guatemala volcano threatens new eruptions

Researchers find new way to estimate magma beneath Yellowstone supervolcano

SHAKE AND BLOW
New perspectives on African migration

Faith leaders, Pygmies join forces in fight for Congo forest

US says air strike kills 12 militants in Somalia

Defence minister warns of intervention in Madagascar crisis

SHAKE AND BLOW
Study finds two ancient populations that diverged later 'reconverged' in the Americas

The making of a human population uncovered through ancient Icelandic genomes

How did human brains get so large?

How to build a brain: discovery answers evolutionary mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.