![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Davis CA (SPX) Oct 27, 2016
The last time Earth experienced both ice sheets and carbon dioxide levels within the range predicted for this century was a period of major sea level rise, melting ice sheets and upheaval of tropical forests. The repeated restructuring of tropical forests at the time played a major role in driving climate cycles between cooler and warmer periods, according to a study led by the University of California, Davis and published in the journal Nature Geoscience. Using fossilized leaves and soil-formed minerals, the international team of researchers reconstructed the ancient atmospheric carbon dioxide record from 330 to 260 million years ago, when ice last covered Earth's polar regions and large rainforests expanded throughout the tropics, leaving as their signature the world's coal resources. The team's deep-time reconstruction reveals previously unknown fluctuations of atmospheric carbon dioxide at levels projected for the 21st century and highlights the potential impact the loss of tropical forests can have on climate.
Climate Change Feeding Off Itself "Most of our estimates for future carbon dioxide levels and climate do not fully take into consideration the various feedbacks involving forests, so current projections likely underestimate the magnitude of carbon dioxide flux to the atmosphere." Similarly to how oceans have served as the primary carbon sink in the recent past, tropical forests 300 million years ago stored massive amounts of carbon dioxide during these ancient glacial periods. The study indicates that repeated shifts in tropical forests in response to climate change were enough to account for the 100 to 300 parts per million changes in carbon dioxide estimated during the climate cycles of the period. While plant biologists have been studying how different trees and crops respond to increasing carbon dioxide levels, this study is one of the first to show that when plants change the way they function as CO2 rises or falls, it can have major impact, even to the point of extinction. "We see great resilience in vegetation to climatic changes, millions of years of stable composition and structure despite glacial-interglacial cycles," said co-author William DiMichele, a paleobiologist with the Smithsonian Institution. "But we've come to understand that there are thresholds that, when crossed, can be accompanied by rapid and irreversible biological change." Co-leading author Jenny McElwain, professor of paleobiology at University College in Dublin, Ireland, said the study indicates that shifts in atmospheric carbon dioxide impacted plant groups differently. "The forest giants of the period were hit particularly hard because they were the most inefficient of all the plants around at the time, likely losing water like open hose pipes" McElwain said. "Their forest competitors, like tree ferns, were able to outcompete them as the climate dried."
Unprecedented Rise of CO2 This trend has been abruptly interrupted by the pronounced rise of carbon dioxide over the past 100 years to the current level of 401 ppm - one not seen on Earth for at least the past 3.5 million years. The current unprecedented rate of rising atmospheric CO2 raises concerns about melting ice sheets, rising sea level, major climate change, and biodiversity loss - all of which were evident more than 300 million years, the only other time in Earth's history when high CO2 accompanied ice at the polar regions.
Related Links University of California - Davis Climate Science News - Modeling, Mitigation Adaptation
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |