Subscribe to our free daily newsletters
. Earth Science News .

Subscribe to our free daily newsletters

Acidification and low oxygen put fish in double jeopardy
by Staff Writers
Washington DC (SPX) May 16, 2016

Left to right: Intern Ken Wesley, technician Ashley Collier-Smart, biologist Seth Miller and technician Andrew Keppel drag a net through the Rhode River to catch silversides. Image courtesy Smithsonian Environmental Research Center. For a larger version of this image please go here.

Severe oxygen drops in the water can leave trails of fish kills in their wakes, but scientists thought adult fish would be more resilient to the second major threat in coastal waters: acidification. A new study published Tuesday from the Smithsonian Environmental Research Center (SERC) shows that is not entirely true - where fish are concerned, acidification can make low oxygen even more deadly.

Low oxygen and high acidity almost always go hand in hand. In coastal waters, nutrient pollution fuels the growth of algae and other organisms. As microbes, plants and animals take up oxygen through respiration, oxygen levels plummet to low levels or even zero. At the same time, acidity spikes as those same organisms release carbon dioxide.

Worldwide, both low oxygen and acidity are expected to worsen as ocean temperatures rise. But until now, most research on how well fish cope has focused on either oxygen or acidification alone. This new study shows the consequences of the double threat: Fish exposed to low oxygen and high acidity can die at higher oxygen levels, suggesting the low-oxygen thresholds considered "safe" might not be as safe as once thought.

"Those dissolved oxygen limits actually might not be as protective as we thought they were," said Seth Miller, postdoctoral fellow and lead author of the study published in Marine Ecology Progress Series.

Even more surprising was the discovery that acidity hurt adult fish. While past research had uncovered dangers for juvenile fish and larvae, adults were thought to be more resilient to increases in acidity by virtue of the fact that their growth has slowed and they have stopped developing.

The team looked at two species of adult silversides, the Atlantic silverside and the inland silverside. Silversides are one of the most abundant fish in estuaries along the Atlantic Coast of the United States, Miller said, so what happens to them can reverberate throughout the entire food web.

Silversides and many other fish have two main behaviors to deal with low oxygen. They swim to the surface, where oxygen levels are often higher, and they beat the flaps over their gills (opercula) more quickly, to increase water flow and oxygen supply. Miller, co-author Denise Breitburg and their collaborators wanted to find out if adding acidity to low oxygen would force silversides to start using these coping mechanisms, and ultimately die, at higher oxygen levels.

The researchers put groups of three silversides each into tanks in a wet lab at SERC's campus in Edgewater, Md. They exposed each fish trio to one of four scenarios: lowering oxygen alone, lowering pH alone (raising acidity), lowering oxygen and pH simultaneously, or a control in which nothing changed.

Then they watched for when the fish first came to the surface to find more oxygen, when they came to the surface and stayed, and when all three silversides died. In a second experiment, they recorded how quickly fish beat their gill flaps. For that, they needed selfie sticks.

"We initially tried to look at the fish and count their beats, which, one, is nearly impossible to do and, two, freaks the fish out," Miller explained. On the other hand, "they were totally uninterested in the camera on a selfie stick."

The team discovered acidification made fish more vulnerable to the dangers of low oxygen. When they lowered oxygen and pH together, both species began swimming to the surface at oxygen levels 25 to 60 percent higher than when the team lowered only oxygen.

They also beat their gill flaps more slowly, a tactic that might protect them from acidification but makes them less able to handle sharp oxygen drops. They died sooner as well. Silversides died at oxygen levels 10 to 54 percent higher when facing acidification and low oxygen combined than when facing low oxygen alone.

But death by low oxygen is not the only danger posed by acidification. When fish swim to the surface, they also become more vulnerable to predators like birds. And when oxygen drops to the point where fish lose their equilibrium and can no longer swim straight, they lose their ability to escape or hide. "If a fish is out in the wild and loses its equilibrium, that fish is dead," Miller said.

Two major changes could help better protect fish and the creatures that depend on them, Breitburg said. First, it is critical to cut nutrient pollution and carbon emissions, since both can exacerbate low oxygen and acidification in coastal waters. Second, regulators need to treat acidification and low oxygen as linked problems, because they are so often linked in nature.

"When we look at combinations of these stressors, sometimes we find effects that are much worse than when we look at them one at a time," she said. "And importantly, we're often surprised at the consequences."

Research paper: Acidification increases sensitivity to hypoxia in important forage fishes

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Water News - Science, Technology and Politics

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Achieving fish biomass targets
Washington DC (SPX) May 11, 2016
Scientists from WCS (Wildlife Conservation Society), University of Queensland, James Cook University, and Macquarie University have completed a massive study that will help communities and countries of the Western Indian Ocean measure and restore fish populations while identifying the best policies for achieving global sustainable and conservation targets. The researchers utilized more tha ... read more

Artist Ai Weiwei says Gaza key part of refugee crisis

Belgian prisons 'like North Korea' as strike crisis hits

Rush on pillows at Canada evacuation center

Nepal's quake recovery costs up by a quarter

Dartmouth announces new way to explore mathematical universe

Scientists take a major leap toward a 'perfect' quantum metamaterial

Design tool enables novices to create bendable input devices for computers

Molybdenum disulfide holds promise for light absorption

UCI sleuths search the seas for soot

Sustainable seafood surging, but not everywhere: report

Study offers clues to better rainfall predictions

Rapid marsh bank sediment build up does not equate land loss resilience

Scientists track Greenland's ice melt with seismic waves

The genetic history of Ice Age Europe

Influence of sea-ice loss on Arctic warming shaped by Pacific temps

Study finds ice isn't being lost from Greenland's interior

Agricultural ammonia emissions disrupt earth's delicate nitrogen balance

Biofeedback system designed to control photosynthetic lighting

How algae could save plants from themselves

Study finds declining sulfur levels

Over a dozen people killed in Uganda landslides

Landslides kill nearly 50 in Rwanda

World's shallowest slow-motion earthquakes detected offshore of NZ

Floods following drought worsen Ethiopian hunger

Senegal's child beggars show limits of 'apptivism'

S.Africa may re-consider regulated rhino horn trade in future

Climate-exodus expected in the Middle East and North Africa

Severe drought forces Zimbabwe to sell off wildlife

Drawing the genetic history of Ice Age Eurasian populations

Hominins may have been food for carnivores 500,000 years ago

Neandertals and Upper Paleolithic Homo sapiens had different dietary strategies

Chimp study explores the early origins of human hand dexterity

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement