. Earth Science News .
EARLY EARTH
Latitude and rain dictated where species lived

The researchers compiled a climate record for Pangaea during the late Triassic period, from 234 million years ago to 209 million years ago, using samples collected from lakes and ancient rift basins stretching from modern-day Georgia to Nova Scotia. Pangaea was a hothouse then: Temperatures were about 20 degrees Celsius hotter in the summer, and atmospheric carbon dioxide was five to 20 times greater than today. Yet there were regional differences, including rainfall amounts.
by Staff Writers
Providence RI (SPX) May 16, 2011
Aggregating nearly the entire landmass of Earth, Pangaea was a continent the likes our planet has not seen for the last 200 million years. Its size meant there was a lot of space for animals to roam, for there were few geographical barriers, such as mountains or ice caps, to contain them.

Yet, strangely, animals confined themselves. Studying a transect of Pangaea stretching from about three degrees south to 26 degrees north (a long swath in the center of the continent covering tropical and semiarid temperate zones), a team of scientists led by Jessica Whiteside at Brown University has determined that reptiles, represented by a species called procolophonids, lived in one area, while mammals, represented by a precursor species called traversodont cynodonts, lived in another. Though similar in many ways, their paths evidently did not cross.

"We're answering a question that goes back to Darwin's time," said Whiteside, assistant professor of geological sciences at Brown, who studies ancient climates. "What controls where organisms live? The two main constraints are geography and climate."

Turning to climate, the frequency of rainfall along lines of latitude directly influenced where animals lived, the scientists write in a paper published this week in the online early edition of the Proceedings of the National Academy of Sciences. In the tropical zone where the mammal-relative traversodont cynodonts lived, monsoon-like rains fell twice a year. But farther north on Pangaea, in the temperate regions where the procolophonids predominated, major rains occurred only once a year. It was the difference in the precipitation, the researchers conclude, that sorted the mammals' range from that of the reptiles.

The scientists focused on an important physiological difference between the two: how they excrete. Mammals lose water when they excrete and need to replenish what they lose. Reptiles (and birds) get rid of bodily waste in the form of uric acid in a solid or semisolid form that contains very little water.

On Pangaea, the mammals needed a water-rich area, so the availability of water played a decisive role in determining where they lived. "It's interesting that something as basic as how the body deals with waste can restrict the movement of an entire group," Whiteside said.

In water-limited areas, "the reptiles had a competitive advantage over mammals," Whiteside said. She thinks the reptiles didn't migrate into the equatorial regions because they already had found their niche.

The researchers compiled a climate record for Pangaea during the late Triassic period, from 234 million years ago to 209 million years ago, using samples collected from lakes and ancient rift basins stretching from modern-day Georgia to Nova Scotia. Pangaea was a hothouse then: Temperatures were about 20 degrees Celsius hotter in the summer, and atmospheric carbon dioxide was five to 20 times greater than today. Yet there were regional differences, including rainfall amounts.

The researchers base the rainfall gap on variations in the Earth's precession, or the wobble on its axis, coupled with the eccentricity cycle, based on the Earth's orbital position to the sun. Together, these Milankovitch cycles influence how much sunlight, or energy, reaches different areas of the planet. During the late Triassic, the equatorial regions received more sunlight, thus more energy to generate more frequent rainfall. The higher latitudes, with less total sunlight, experienced less rain.

The research is important because climate change projections shows areas that would receive less precipitation, which could put mammals there under stress.

"There is evidence that climate change over the last 100 years has already changed the distribution of mammal species," said Danielle Grogan, a graduate student in Whiteside's research group. "Our study can help us predict negative climate effects on mammals in the future."

Contributing authors include Grogan, Paul Olsen from Columbia University, and Dennis Kent from Rutgers. The National Science Foundation and the Richard Salomon Foundation funded the research.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
-
Explore The Early Earth at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


EARLY EARTH
Paper announces discovery of 1 of earliest minerals formed in solar system
Los Angeles CA (SPX) May 09, 2011
In the May-June issue of the journal American Mineralogist, a team of scientists announced the discovery of the new mineral krotite, one of the earliest minerals formed in our solar system. It is the main component of an unusual inclusion embedded in a meteorite (NWA 1934), found in northwest Africa. These objects, known as refractory inclusions, are thought to be the first planetary mater ... read more







EARLY EARTH
Japan's nuclear crisis timetable on track: PM

Doctors defy radiation woes in Japan's Fukushima

New Zealand budget to focus on quake bill: PM

Japan's TEPCO says shutdown plan on schedule

EARLY EARTH
Raytheon Receives Contract to Produce Additional APG-79 AESA Radars

How to control complex networks

Video gaming teens sleep less: study

Mixing fluids efficiently in confined spaces: Let the fingers do the working

EARLY EARTH
First ocean acidification buoy installed off Alaska

Foothill yellow-legged frog provides insight on river management

Salinity in Outer Banks wells traced to fossil seawater

Salinity in Outer Banks wells traced to fossil seawater

EARLY EARTH
Denmark plans claim to North Pole seabed: foreign minister

Ecological impact on Canada's Arctic coastline linked to climate change

Canada PM's Arctic stand 'frosty rhetoric'

States set rules on exploiting Arctic wealth

EARLY EARTH
Livestock genes could protect against one of Africa's oldest animal plagues

Drought tolerance in crops: Shutting down the plant's growth inhibition under mild stress

India's top court imposes ban on 'toxic' pesticide

New Strategy Aims to Reduce Agricultural Ammonia

EARLY EARTH
New Zealand inquest told of quake victims' last moments

Vietnam tests first tsunami alert system

Australian flood costs top $6 billion

Local tsunami alert after 6.5 quake off Papua New Guinea

EARLY EARTH
Mozambique wages war on man-eating crocs

Humanity can and must do more with less

Outside View: Kenya mobile banking network

Burkina Faso ruling party says opposition aiming for coup

EARLY EARTH
Sporadic mutations identified in children with autism spectrum disorders

Computer program aids patients in end-of-life planning

Ancient rock carvings found in Sudan

New method for engineering human tissue regeneration


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement