Earth Science News  





. Seismic Network Could Improve Disaster Response

As of 2003 the IRIS GSN was made up of over 128 stations with affiliations to USGS, UCSD/IDA, GEOFON, Pacific21, NCDSN, GEOSCOPE, MedNet, BGR, BFO, USNSN, BDSN, TriNet, AFTAC and several other national and international networks. Eight new stations are planned for completion in 2003-2005.

The IRIS GSN stations continuously record seismic data from very broad band seismometers at 20 samples per second, and to provide for high-frequency (40 sps) and strong-motion (1 and 100 sps) sensors where scientifically warranted. It is also the goal of the GSN to provide for real-time access to its data via Internet or satellite. Over 75% of the IRIS GSN stations meet this goal.


Washington (SPX) Feb 08, 2005
While nothing can undo the devastation from the massive tsunami that recently struck in Southeast Asia, lives can be saved in the future if scientists can rapidly characterize the earthquakes that cause tsunami.

The quick response of the Global Seismographic Network to the 26 December 2004 Sumatra- Andaman earthquake offers clear opportunities to reduce the amount of time before an emergency response and assistance could be dispatched to a similarly afflicted area in the future.

The 137-station network, funded by the U.S. National Science Foundation in partnership with the U.S. Geological Survey, is managed by the Incorporated Research Institutions for Seismology (IRIS) Consortium and operated by the USGS, the University of California, San Diego, and a number of domestic and international institutions to monitor earthquakes and other seismic activity worldwide.

And, according to Jeffrey Park from Yale University and his colleagues, the recent subduction zone rupture that touched off the Asian tsunami was the first full-scale test of the system's technical design goals, set more than 20 years ago.

The success of the network will become increasingly apparent as more highly detailed information from the global array is produced and studied, Park writes in an article about the seismographic network and the Sumatran earthquake for the 8 February issue of Eos, Transactions of the American Geophysical Union.

The authors note that with the network now online, and with the planned addition of more seismograph locations into the system, strong seismic events in the future can be continuously monitored in unprecedented detail from the instant when the first signals arrive at monitoring stations.

Such direct observations could allow scientists to quickly determine the magnitude of an event and its precise location in near real-time.

Seismic waves from the 9.3-magnitude Sumatra earthquake, for example, reached a monitoring station in Sri Lanka within four minutes and caused the needles on thousands of seismometers worldwide to dance within 21 minutes, but earlier knowledge of the northwest direction of its rupture would have allowed for a more confident warning to the Indonesian coastline that bore the brunt of the tidal wave.

The scientists point out, however, that a communications and public warning system was not yet established to spread the word about the resulting tsunami.

"The terrible damage and loss of life wrought by this earthquake humbles the most dispassionate observer, as does the strong likelihood that one or more [similar] earthquakes will occur elsewhere in the coming century," Park writes in the article.

"Technological advances have enabled real time data acquisition and rapid response capabilities that were not fully envisioned when the network was designed in 1984 and, while improved station coverage and telemetry would enhance the current system, its capabilities have not been exploited fully."

The authors propose that a standardized, continuous system to track seismic signals could allow researchers to compile and interpret information about potential hazards sooner.

Also, in an indication how the network could combine with an ocean-pressure tsunami monitoring system, the authors point out that later analyses of seismographic network data shows that it was possible to model at least a portion of the ground slip from the first three minutes of the Asian earthquake's seismic motion, which would have assisted in predicting the event and its subsequent aftershocks.

The researchers predict that because of its unparalleled detail, data from the Global Seismographic Network is expected to drive new scientific discoveries in the future, ranging from a better understanding of the preliminary conditions prior to a fault rupture, to honing tsunami and flood models.

The authors indicate that such studies, in combination with other geodetic information, could be applied to seismically active regions worldwide, like the Cascadia subduction zone in the Pacific Northwest.

Related Links
U.S. National Science Foundation
U.S. Geological Survey
Global Seismographic Network
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

ImageCat Investigates Tsunami Damage Using DigitalGlobe Satellite Imagery
Longmont CO (SPX) Feb 08, 2005
DigitalGlobe has announced that ImageCat is using DigitalGlobe's QuickBird satellite imagery to assess damage resulting from the massive Indian Ocean tsunami that was triggered by an earthquake on Dec. 26, killing more than 226,000 people.

.
Get Our Free Newsletters Via Email
  



  • Seismic Network Could Improve Disaster Response
  • ImageCat Investigates Tsunami Damage Using DigitalGlobe Satellite Imagery
  • Satlynx Deliver Transportable Solutions For European Emergency Services
  • Cornell Web Map Drills Down To Features Of Sri Lanka Tsunami Damage

  • Carbon Storage Gets A Push In Hopes For Defeating Global Warming
  • New Methane Chambers To Help Reduce Global Warming
  • Spectroscopy For The Real World
  • International Science Team Measures Arctic's Atmosphere

  • Raytheon Achieves NPOESS Ground System Milestone On Schedule, On Budget
  • The Impact Of Satellite Technology On Maritime Legislation
  • Siberian Fires Most Common Near People
  • GMES, European Contribution To GOESS Initiative

  • Tiny Superconductors Withstand Stronger Magnetic Fields
  • UPI Energy Watch
  • Oregon May Lead Future Of Wave Energy
  • NETL And Carnegie Mellon Create New Paradigms For Hydrogen Production



  • Microbes In Colorful Yellowstone Hot Springs Fueled By Hydrogen
  • SAfrican Government Consults Scientists On Elephant Culling
  • NASA Analyzes Prehistoric Predator From The Past
  • Scientists Discover Unique Microbe In California's Largest Lake





  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement