Earth Science News  





. Switching Goals

Evolution takes place under changing environmental conditions, forcing organisms to continually readapt.
by Staff Writers
Tel Aviv, Israel (SPX) Sep 04, 2007
Is heading straight for a goal the quickest way there? If the name of the game is evolution, suggests new research at the Weizmann Institute of Science, the pace might speed up if the goals themselves change continuously.

Nadav Kashtan, Elad Noor and Prof. Uri Alon of the Institute's Molecular Cell Biology and Physics of Complex Systems Departments create computer simulations that mimic natural evolution, allowing them to investigate processes that, in nature, take place over millions of years. In these simulations, a population of digital genomes evolves over time towards a given goal: to maximize fitness under certain conditions. Like living organisms, genomes that are better adapted to their environment may survive to the next generation or reproduce more prolifically.

But such computer simulations, though sophisticated, don't yet have all the answers. Achieving even simple goals may take thousands of generations, raising the question of whether the three-or-so billion years since life first appeared on the planet is long enough to evolve the diversity and complexity that exist today,

Evolution takes place under changing environmental conditions, forcing organisms to continually readapt. Intuitively, this would slow things down even further, as successive generations must switch tack again and again in the struggle to survive. But when Kashtan, Noor and Alon created a simulation in which the goals changed repeatedly, they found that its evolution actually speeded up. They even found that the more complex the goal - i.e., the more generations needed reach it under fixed conditions - the faster evolution accelerated in response to changes in that goal.

Computerized evolution ran fastest, the scientists found, when the changes followed a pattern they believe may be pervasive in nature. In previous research, Kashtan and Alon had shown that evolution may often be modular - involving adjustments to standard parts, rather than wholesale remodeling. They theorized that the forces acting on evolution may be modular as well, and for each goal, they defined subgoals that could each change in relation to the others.

'In an organism, for example, you might classify these subgoals as the need to eat, the need to keep from being eaten, and the need to reproduce. The same subgoals must be fulfilled in each new environment, but there are differences in nuance and combination,' says Kashtan. 'We saw a large speedup, for instance, when we repeatedly exchanged an 'OR' for an 'AND' in the computer code defining our goals, thus changing the relationship between subgoals.'

Although the main aim of this research, which appeared recently in the Proceedings of the National Academy of Sciences (PNAS), was to shed light on theoretical questions of evolution, it may have some practical implications, particularly in engineering fields in which evolutionary tools are commonly used for systems design; and in computer science, by providing a possible way to accelerate optimization algorithms.

Prof. Uri Alon's research is supported by the Nella and Leon Benoziyo Center for Neurological Diseases; the Clore Center for Biological Physics; the Yad Abraham Research Center for Cancer Diagnostics and Therapy; the Leon and Gina Fromer Philanthropic Fund; the Kahn Family Foundation for Humanitarian Support; Keren Isra-Pa'amei Tikva Ltd.; the Minerva Stiftung Gesellschaft fuer die Forschung m.b.H.; the James and Ilene Nathan Charitable Directed Fund; the Harry M. Ringel Memorial Foundation; the estate of Ernst and Anni Deutsch, Liechtenstein; and Mr. and Mrs. Mordechai Segal, Israel.

Community
Email This Article
Comment On This Article

Related Links
Weizmann Institute of Science
Darwin Today At TerraDaily.com




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
When Bivalves Ruled The World
Milwaukee WI (SPX) Sep 05, 2007
Before the worst mass extinction of life in Earth's history - 252 million years ago - ocean life was diverse and clam-like organisms called brachiopods dominated. After the calamity, when little else existed, a different kind of clam-like organism, called a bivalve, took over.

.
Get Our Free Newsletters Via Email
  



  • Japan holds disaster drills to prepare for big quake
  • Devastated New Orleans mourns Katrina dead two years on
  • NKorea searches for fugitives after floods: aid group
  • Death toll mounts as floods, heat wave batter US

  • UN conference highlights Spain's threat from desertification
  • Half-price Big Mac to fight global warming proves big hit in Japan
  • Desertification is creeping up on world agriculture: UN agency
  • NASA Study Predicts More Severe Storms With Global Warming

  • NASA Scientist Treks To Burning Man Festival
  • European Hot Spots And Fires Identified From Space
  • China Develops Beidou Satellite Monitoring System
  • DigitalGlobe Announces Launch Date For WorldView-1

  • Analysis: Oil, security for Iraq investors
  • Australia And China Partner For A Low-Emission Energy Future
  • Grain Will Not Become Oil
  • Analysis: Iraq oil law (still) coming soon

  • Researchers Discover New Strategies For Antibiotic Resistance
  • Yale Scientists Use Nanotechnology To Fight E. Coli
  • Pig disease spreads through China
  • Discovery Could Help Stop Malaria At Its Source - The Mosquito

  • Switching Goals
  • When Bivalves Ruled The World
  • First Orchid Fossil Puts Showy Blooms At Some 80 Million Years Old
  • Bioengineers Devise Nanoscale System To Measure Cellular Forces

  • MIT Unraveling Secrets Of Red Tide
  • Malaysia culls 50,000 pigs over smell, pollution
  • Boffins in Ireland claim chewing gum breakthrough
  • Biosensors To Probe The Metals Menace

  • Researchers Propose New Molecule To Explain Circadian Clock
  • How Much Will You Pay To Live Near People Like You
  • Not All Risk Is Created Equal
  • Area Responsible For Self-Control Found In The Human Brain

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement