![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Miami FL (SPX) Mar 04, 2022
A new study led by researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science found that corals that underwent a stressful temperature treatment in the laboratory for 90 days were more tolerant to increased water temperatures. These findings offer coral restoration scientists with a new approach to potentially increase the success rate of planting nursery-raised staghorn coral onto degraded reefs as climate change continues to warm ocean temperatures, resulting in more frequent coral bleaching events. Staghorn coral (Acropora cervicornis) has died off throughout South Florida and the Caribbean, and is listed as "threatened" on the Endangered Species Act. While previous "stress-hardening" experiments on corals have utilized exposures to short-term temperatures, the UM Rosenstiel School team assessed the effect of a long-term, variable treatment where temperatures reached a stressful level for a brief period of time, twice per day. "This 'training' regime is akin to an athlete preparing for a race," said the study's lead author Allyson DeMerlis, a Ph.D. student at the UM Rosenstiel School. "We were able to demonstrate that this temperature treatment can boost the corals' stamina to heat stress." To conduct the experiment, DeMerlis and scientists at the National Oceanic and Atmospheric Administration's (NOAA) Atlantic Oceanographic and Meteorological Laboratory, and UM's Cooperative Institute for Marine and Atmospheric Studies, collected coral fragments from six distinct genetic individuals of Caribbean staghorn coral from the UM Rosenstiel School's Rescue a Reef coral nursery and randomly assigned them to one of three groups: (1) field control, (2) laboratory control, and (3) variable temperature treatment. The laboratory control and variable temperature-treated corals were subjected to a three-month treatment period where the laboratory controls were kept at a constant 28 degrees Celsius while the variable temperature regime corals were subjected to fluctuating temperatures between 28 to 31 degrees Celsius, twice daily for three months. The scientists then measured bleaching progression photographically as well as the number of days that a coral endured thermal stress before bleaching. They found that the variable temperature treatment significantly improved coral endurance in thermal stress, on the order of several days, in comparison to the untreated corals. In addition, they found that untreated corals were more likely to quickly succumb to disease-like signs of tissue loss. The findings demonstrate the benefit of using a variable temperature treatment in the laboratory setting for maintaining staghorn coral over the traditional static temperatures. This may be translated in the field for restoration practitioners, specifically for identifying locations where their coral nurseries and outplanting sites can be exposed to more fluctuating temperatures. "We have unfortunately reached the point where active intervention and restoration are necessary to ensure that valuable coral reefs are able to persist for generations to come," said Ian Enochs, senior author of the study and a coral scientist at NOAA's Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division. "We want to increase the efficiency and efficacy of these efforts, and ultimately ensure that the corals that are placed back out on a reef have the greatest chance of enduring the stressful conditions they will face in the future." "Our findings bring a glimmer of hope to the uncertain future of corals, as we identified a treatment in which we can enhance their tolerance to heat stress," said DeMerlis.
Research Report: "Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress"
![]() ![]() Mysteries and music: listening in to underwater life Paris (AFP) Feb 18, 2022 When marine researchers started recording sounds in the seagrass meadows of the Mediterranean Sea they picked up a mysterious sound, like the croak of a frog, that resounded within the dense foliage - and nowhere else. "We recorded over 30 seagrasses and it was always there and no-one knew the species that was producing this kwa! kwa! kwa!" said Lucia Di Iorio, a researcher in ecoacoustics at France's CEFREM. "It took us three years to find out the species that was producing that sound." ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |