![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Granada, Spain (SPX) Feb 28, 2008 A research team of the University of Granada has managed to produce the most useful material to date to eliminate pollutants such as benzene, toluene and xylene, organic solvents widely used in the hydrocarbon industry and generated by road traffic in cities. The world-wide problem of the exposure to aromatic hydrocarbons has mainly focused its attention on benzene, which is considered to be harmful to health, even in low concentrations. This material is a monolithic carbon aerogel with the advantage of not only being able to retain these pollutants: it can also be easily regenerated and can therefore be used in several cycles. This research has been carried out by David Fairen Jimenez, from the Department of Inorganic Chemistry at the University of Granada, and directed by lecturers Carlos Moreno Castilla and Francisco Carrasco Mar�n. The aim of this study was to prepare and describe a series of new materials - monolithic carbon aerogels - as adsorbers of benzene, tolene and xylene (BTX).
Highly Pollutant Furthermore, the design of the adsorbent bed must allow a sufficient contact for the elimination of compounds and at the same time avoid a decrease in pressure. Finally, the material used must withstand the mechanical forces of vibration and movement. David Fairen states that "the monolithic carbon aerogels, which are the materials we worked with, satisfy all these requirements".
Twice the information On the other hand, they have obtained materials with better properties than other results published in the bibliography regarding the elimination of pollutants such as benzene, toluene and xylene. This is because they have a high capacity to retain pollutant compounds and they can be easily regenerated and used in several cycles. The design of these samples, as they can be synthesized in the required way, makes them suitable to be applied in streams with a high gas flow without a decrease in the pressure of the adsorbent bed. Community Email This Article Comment On This Article Related Links University of Granada Our Polluted World and Cleaning It Up
![]() ![]() Considerable attention has been paid to the effects of endocrine disrupting chemicals in aquatic environments, but rather less attention has been given to routes of contamination on land. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |