. Earth Science News .
WATER WORLD
El Nino resulted in unprecedented erosion of the Pacific coastline
by Staff Writers
Santa Barbara CA (SPX) Feb 15, 2017


While most beaches in the survey eroded beyond historical extremes, some fared better than others. The condition of the beach before the winter of 2015 strongly influenced the severity of erosion and the ability of the beach to recover afterward through natural replenishment processes.

Last winter's El Nino might have felt weak to residents of Southern California, but it was in fact one of the most powerful climate events of the past 145 years. If such severe El Nino events become more common in the future as some studies suggest they might, the California coast - home to more than 25 million people - may become increasingly vulnerable to coastal hazards. And that's independent of projected sea level rise.

New research conducted by U.S. Geological Survey (USGS) scientists and their colleagues at UC Santa Barbara and six other institutions found that during the 2015-16 El Nino winter beach erosion on the Pacific coast was 76 percent above normal, and that most beaches in California eroded beyond historical extremes. The results appear in the journal Nature Communications.

"This study illustrates the value of broad regional collaboration using long-term data for understanding coastal ecosystem responses to changing climate," said ecologist David Hubbard, an associate specialist at UCSB's Marine Science Institute. "We really need this scale of data on coastal process to understand what's going on with the ecology of the coast."

The research team assessed seasonal beach behavior for 29 beaches along more than 1,200 miles of the Pacific coast. The investigators' efforts included making 3-D surface maps and cross-shore profiles using aerial LiDAR (Light Detection and Ranging), GPS topographic surveys and direct measurements of sand quantities.

They then combined that with wave and water level data from each beach between 1997 and 2016. Winter beach erosion - the removal and loss of sand from the beach - is a normal seasonal process, but during El Nino events the extent of erosion can be more severe.

"Wave conditions and coastal response were unprecedented for many locations during the winter of 2015-16," said lead author Patrick Barnard, a geologist with the USGS. "The winter wave energy equaled or exceeded measured historical maximums along the West Coast, corresponding to extreme beach erosion across the region."

The 2015-16 El Nino was one of the three strongest events ever recorded, along with the El Nino winters of 1982-83 and 1997-98. From a water resources perspective though, the most recent El Nino was largely considered a dud due to the unusually low rainfall, particularly in Southern California, which received 70 percent less rain than during the past two big El Nino events.

"However, the waves that attacked our coast, generated from storms across the North Pacific, were exceptional and among the largest ever recorded," Barnard said.

"Further, the lack of rainfall means the coastal rivers produced very little sand to fill in what was lost from the beaches, so recovery has been slow." Rivers remain the primary source of sand for California beaches, despite long-term reductions in the 20th century due to extensive dam construction.

While most beaches in the survey eroded beyond historical extremes, some fared better than others. The condition of the beach before the winter of 2015 strongly influenced the severity of erosion and the ability of the beach to recover afterward through natural replenishment processes.

Unlike California, many Pacific Northwest beaches have gained sediment in the years leading up to the 2015-16 El Nino. That's due - at least in part - to more production of sand from local watersheds, dune growth and a series of mild winter storm seasons.

Mild wave activity in the Pacific Northwest and artificial augmentation of beaches (adding sand) in Southern California prior to the winter of 2015-16 prevented some areas from eroding beyond historical landward extremes.

"It looks like climate change will bring us more El Nino events, possibly twice as many, at twice the frequency as in the past," Hubbard said. "So this is a taste of what's coming.

"First we need to understand the challenges, and those include the rising sea level and the fact that most of the problems occur during these peak El Nino events," he added. "Then we need to restore or manage our coasts in ways that will enable us to deal with these events and conserve beach ecosystems. I think that's the challenge that we as a society have to address."

"Infrequent and extreme events can be extremely damaging to coastal marine habitats and communities," said David Garrison, a program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research.

"While this paper stresses the effect of waves and sediment transport on beach structure, organisms living on and in the sediment will also be profoundly affected."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Barbara
Water News - Science, Technology and Politics






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Why has ENSO been more difficult to predict since 2000?
Beijing, China (SPX) Feb 03, 2017
El Nino-Southern Oscillation (ENSO), which is one of the most striking interannual variability in the tropical Pacific, has been extensively studied for several decades. Understanding the changes in its characteristics is still an important issue for worldwide environmental and socioeconomic interests. Clear decadal variations exist in the ENSO's predictability, with the most recent decade ... read more


WATER WORLD
Bringing satellites to users can improve public health and safety

Free hairdos to boost confidence of displaced Iraqi women

'Scorpion' robot mission inside Fukushima reactor aborted

Myanmar jade mine landslide kills 9: official

WATER WORLD
Terahertz chips a new way of seeing through matter

Cooling roofs and other structures with no energy

Researchers engineer thubber a stretchable rubber that packs a thermal conductive punch

Penn researchers are among the first to grow a versatile 2-dimensional material

WATER WORLD
Ethiopia dam causes Kenya water shortage: rights group

10 Italian execs found guilty over polluted water supply

Seagrass on decline, jeopardizing human, coral health: study

El Nino resulted in unprecedented erosion of the Pacific coastline

WATER WORLD
How an Ice Age paradox could inform sea level rise predictions

Sentinels warn of dangerous ice crack

Sea ice at poles hit record low for January

Arctic cultures take climate fight to Berlin film fest

WATER WORLD
Nicaragua focuses on climate-change resistant coffee

Gluten-free diet may increase risk of arsenic, mercury exposure

Study rewrites the history of corn in corn country

Mongolia herders reel under dreaded 'dzud' weather

WATER WORLD
Italy asks EU aid as cost of quakes hits 23 bn euros

Cyclone bears down on Mozambique coast

Ventura fault could cause stronger shaking

Researchers catch extreme waves with higher-resolution modeling

WATER WORLD
Interim authorities to begin work in Mali's north

UN demands armed groups stop fighting in C. Africa

S. Sudan army says general who quit was 'deeply' corrupt

Ivory Coast arrests six journalists over mutiny 'false information'

WATER WORLD
Study links working remotely to more stress, insomnia

Study: The human brain always has a backup plan

Chimpanzee feet allow scientists a new grasp on human foot evolution

Humans subconsciously perceive words as 'round' or 'sharp'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.