Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
New research on seaweeds shows it takes more than being flexible to survive crashing waves
by Staff Writers
Washington DC (SPX) May 17, 2012


The authors collected fronds from six different species of algae (four branched, two bladed) along the intertidal zone of the central Californian coast, placed them in a recirculating water flume, and measured the drag they experienced and the changes in shape and size they underwent under 15 different rates of water flow, ranging from 0 to 4 m/sec. Interestingly, they found that while all six species of seaweed underwent severe reconfiguration as water velocity increased-thus limiting the drag they would otherwise experience if they were rigid-the two types of algae accomplished this in slightly different ways.

Seaweeds are important foundational species that are vital both as food and habitat to many aquatic and terrestrial shore organisms. Yet seaweeds that cling to rocky shores are continually at risk of being broken or dislodged from their holds by crashing waves with large hydrodynamic forces. So how do such seaweeds survive in intertidal zones? Do they have special properties that make them extremely flexible or particularly strong?

Patrick Martone (University of British Columbia) has spent a considerable amount of time standing on the shore watching big waves crash against intertidal rocks and wondering how the seaweeds-or anything else-manage to survive there.

"Many animals can run and hide when storms roll in and the waves increase," Martone observes. "But seaweeds don't have that option; they have to just hold on tight and face the waves head-on."

Indeed, the drift algae that pile up on the beach after a big storm suggest that not all algae are able to survive such onslaughts.

"So what is special about the ones that do survive?"

Previous research has found that one solution seaweeds have come up with is flexibility. Blades of seaweed may curl up and branches may collapse, thereby changing the shape of the seaweed and reducing drag as water velocity increases. But different seaweeds may utilize different strategies to effectively reduce drag, such that some may be better at changing shape and others at reducing size.

Martone and colleagues from Stanford University and St. John Fisher College were interested in teasing apart some of these variables and published their findings recently in the American Journal of Botany.

By exploring the dynamics of size and shape changes of intertidal seaweeds at different rates of water flow, Martone and co-authors hoped to better understand the various strategies that have led to the morphological diversity in macroalgae seen along wave-swept shores.

The authors collected fronds from six different species of algae (four branched, two bladed) along the intertidal zone of the central Californian coast, placed them in a recirculating water flume, and measured the drag they experienced and the changes in shape and size they underwent under 15 different rates of water flow, ranging from 0 to 4 m/sec.

Interestingly, they found that while all six species of seaweed underwent severe reconfiguration as water velocity increased-thus limiting the drag they would otherwise experience if they were rigid-the two types of algae accomplished this in slightly different ways.

"Unbranched algae seem to be 'shape changers,' reducing drag primarily by folding and collapsing in flow," notes Martone. "Certain branched algae, on the other hand, are 'area reducers,' compensating for drag-prone shapes by reducing frond size through branch reorientation and compression. Thus, we demonstrate that flexibility acts in two distinct ways: permitting wave-swept algae to change shape and to reduce frond area projected into the flow."

Martone and colleagues also wanted to see how accurately responses at slow speeds of water flow could be extrapolated to what happens at higher speeds, such as what the seaweeds might be experiencing along the shore.

"Most structural engineers have it easy," Martone says. "Studying air flow around airplane wings or water flow around bridges is relatively straightforward, since these man-made structures are rigid and do not deform in flow. Seaweeds are more complicated because they are flexible. As flow speeds increase, flexible seaweeds re-orient and reconfigure, changing size and shape to reduce drag, making predictions much more difficult."

Indeed, the authors found that measurements extrapolated out from lower speeds did not always match those observed at higher speeds, making it tricky to predict what would happen at higher water velocities. Moreover, in the experimental water flume seaweeds may have more time to react to water speeds that are relatively slow compared with breaking waves-a condition whereby fast reaction times may be crucial for reconfiguring and reducing drag.

"Understanding how selection can act on the ability to change shape or the ability to reduce size in flow may give us insight into the morphological evolution of intertidal algae," summarizes Martone.

Martone concludes that further investigation is still needed to tease these features apart: "We have started building flexible models of branched and unbranched seaweeds in the lab to explore how precise changes in branching affect drag. We hope this work will help us better understand how waves have sculpted seaweeds over evolutionary time."

Patrick T. Martone, Laurie Kost, and Michael Boller. 2012. Drag reduction in wave-swept macroalgae: Alternative strategies and new predictions. American Journal of Botany 99(5): 806-815. DOI: 10.3732/ajb.1100541. The full article in the link mentioned is available here.

.


Related Links
American Journal of Botany
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
New Zealand warned on resource usage
Wellington, New Zealand (UPI) May 16, 2012
New Zealand must do more research before exploiting marine resources, the country's national scientific academy warned. Scientific data about the impact such exploitation would have on ocean ecosystems is lacking, The Royal Society of New Zealand said Tuesday. The country's fisheries were cited as an example of how natural resources should be scientifically managed, as unrestrict ... read more


WATER WORLD
Lebanese army deploys in Tripoli areas hit by fighting

German insurer Allianz says profits soar 60%

Economists list cheapest ways to save the world

2012 not end of world for Mayans after all

WATER WORLD
China grants more quotas for rare earth exports

Toshiba shares jump as it drops Japan TV operations

Record data transmission speed set

Samsung on top as mobile phone sales dip: survey

WATER WORLD
New Zealand warned on resource usage

Researchers map fish species at risk from dams

New research on seaweeds shows it takes more than being flexible to survive crashing waves

World Bank $275 mn loan to tackle Philippines sewage

WATER WORLD
Russia's Antarctic probes to be tested in Ladoga Lake

Climate scientists discover new weak point of the Antarctic ice sheet

Antarctic octopuses 10,000km apart "genetically similar"

Visiting Snowball Earth

WATER WORLD
Barley takes a leaf out of reindeer's book in the land of the midnight sun

Cambodian girl killed in land row: official

Wasted milk is a real drain on our resources

Tiny plants could cut costs, shrink environmental footprint

WATER WORLD
Sumatra said at risk from volcanoes

Georgia flood disaster exposes capital's slums

6.0-magnitude quake hits Papua New Guinea: USGS

First tropical storm of eastern Pacific season off Mexico

WATER WORLD
War-torn Somalia stages TEDx conference

Chinese firm not paying diamond proceeds to Zimbabwe: FM

Algeria's political battle: Army v. spooks

DRCongo forces bomb mutineers in famed African park

WATER WORLD
Evolution's gift may also be at the root of a form of autism

Anthropologist finds explanation for hominin brain evolution in famous fossil

Wall art from France said world's oldest

Extra gene drove instant leap in human brain evolution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement