![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Sarah Cafasso | Stanford Natural Capital Project Stanford CA (SPX) Jun 13, 2022
Investments in the environment are paying off for a California county where projects designed to restore the natural environment are also buffering the impacts of sea-level rise, according to a new study by Stanford researchers. The research, published June 9 in Urban Sustainability, shows that nature-based solutions, such as conserving marshlands and restoring beaches, can be as effective as concrete seawalls at protecting against sea-level rise while providing extra benefits. Those benefits, such as opportunities for recreation, climate change mitigation through carbon storage, and nutrient pollution reduction, provide incentives for policymakers to prioritize nature-based solutions for sea-level rise. "We're uncovering new benefits of decisions that have already been made about conservation or restoration efforts," said study lead author Anne Guerry, chief strategy officer and lead scientist at Stanford University's Natural Capital Project. "Our models show how communities can reap more benefits as they invest more in nature." Guerry co-authored a paper last year showing how traditional approaches to combating sea-level rise can create a domino effect of environmental and economic impacts for nearby communities. The new research is the product of a partnership between San Mateo County, the San Francisco Estuary Institute, and Stanford's Natural Capital Project to develop an actionable, science-driven plan to combat sea-level rise.
Modeling solutions The second scenario considered conservation and restoration projects currently underway or in various stages of planning in the county, such as the rehabilitation of salt ponds and the addition of a beach in front of a levee. The third scenario explored additional, feasible nature-based projects, such as protecting marshlands and restoring native seagrasses and oyster beds along the coastline. The team used InVEST, the Natural Capital Project's free, open-source software, to model the extra benefits that could flow to people from the county's sea-level rise adaptation options. They found that conservation and restoration projects would deliver up to eight times the amount of benefits as traditional solutions while providing the same level of flood protection. For example, the results showed that the nature-based solutions that are being implemented today would result in six times more stormwater pollution reduction than the scenario that used traditional concrete seawalls. The third scenario, which proposed additional nature-based projects, would result in eight times more stormwater pollution reduction than traditional approaches, a crucial benefit for keeping Bay waters clean. The researchers met with residents, community groups, and other government agency staff to co-develop guiding principles for the county's sea-level rise adaptation planning. Among them: Prioritize nature-based actions; use an inclusive, equitable, and community-based process to make decisions; and rigorously track the process to reduce vulnerability, risks, and impacts. "Because we engaged with government and other stakeholders, our results will be more helpful to decision-makers throughout the county," Guerry said. "Regionally, there is a lot of enthusiasm for nature-based solutions. We are hopeful that this work can help build momentum and tailor approaches to places where they will be effective as long-term sea-level rise solutions."
Research Report:Protection and restoration of coastal habitats yield multiple benefits for urban residents as sea levels rise
![]() ![]() The structure of cluster merger shocks East Boothbay ME (SPX) Jun 13, 2022 The Gulf of Maine is growing increasingly warm and salty, due to ocean currents pushing warm water into the gulf from the Northwest Atlantic, according to a new NASA-funded study. These temperature and salinity changes have led to a substantial decrease in the productivity of phytoplankton that serve as the basis of the marine food web. Specifically, phytoplankton are about 65% less productive in the Gulf of Maine than they were two decades ago, scientists at Bigelow Laboratory for Ocean Sciences ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |