Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
Stanford researchers reveal great white sharks' fuel for oceanic voyages: liver oil
By Rob Jordan for Stanford News
Stanford CA (SPX) Jul 22, 2013


File image.

Great white sharks are not exactly known as picky eaters, so it might seem obvious that these voracious predators would dine often and well on their migrations across the Pacific Ocean. But not so, according to new research by scientists at Stanford University and the Monterey Bay Aquarium.

The researchers' findings, published July 17 in Proceedings of the Royal Society B, reveal previously unknown details of how great white sharks power themselves and stay buoyant on non-stop trips of more than 2,500 miles. The discoveries have potentially broad implications for conservation and management of coastal waters.

"We have a glimpse now of how white sharks come in from nutrient-poor areas offshore, feed where elephant seal populations are expanding - much like going to an Outback Steakhouse - and store the energy in their livers so they can move offshore again," said researcher Barbara Block, a professor of marine sciences and a senior fellow at the Stanford Woods Institute for the Environment. "It helps us understand how important their near-shore habitats are as fueling stations for their entire life history."

Just as bears put on fat to keep them going through long months of hibernation, ocean-going mammals such as whales and sea lions build up blubber to burn on their long migrations. Until now, little was known about how sharks, which carry fat in their massive livers rather than external blubber, make similar voyages.

In a study initiated by a summer project of Stanford undergraduate student Gen Del Raye, researchers first looked at a well-fed juvenile great white shark at the Monterey Bay Aquarium. They documented over time a steady increase in buoyancy as the shark's body mass increased, presumably due to the addition of stored oils in its liver.

The researchers then turned to detailed data records from electronically tagged white sharks free-swimming in the eastern Pacific Ocean. Using these data, which include location, depth and water temperature, the scientists identified periods of "drift diving," a common behavior of marine animals in which they passively descend while momentum carries them forward like underwater hang gliders.

By measuring the rate at which sharks sink during drift dives, the researchers were able to estimate the amount of oil in the animals' livers, which accounts for up to a quarter of their body weight. A quicker descent meant less oil was present to provide buoyancy. A slower descent equated with more oil.

"Sharks face an interesting dilemma," said Sal Jorgensen, a research scientist at the Monterey Bay Aquarium. "They carry a huge store of energy in the form of oil in their massive livers, but they also depend on that volume of oil for buoyancy. So, if they draw on those reserves, they become heavier and heavier."

Buoyancy consistently decreased over the course of each studied shark's migration, indicating a gradual but steady depletion of oil in the liver. In other words, they were primarily running on energy stored up before they embarked on their journeys.

"The most difficult thing about this research was finding a way to bring all of the different sources of data together into a coherent and robust story," said Del Raye.

Part of that story is the importance of calorie-stocked coastal feeding grounds, not just for mammals such as whales, but also for sharks readying for long-distance migrations. Could the same be true for other ocean animals such as sea turtles and a variety of fish? The study may help answer that question too through a novel technological approach that can be applied to ongoing studies of other large marine animals.

.


Related Links
Stanford Woods Institute for the Environment.
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Evolutionary changes could aid fisheries
Laxenburg, Austria (SPX) Jul 22, 2013
Sustainable fishing practices could lead to larger fishing yields in the long run, according to a new study that models in detail how ecology and evolution affect the economics of fishing. Evolutionary changes induced by fisheries may benefit the fishers, according to a new study published last week in the Proceedings of the National Academy of Sciences. But if fisheries are not well-manag ... read more


WATER WORLD
Fukushima steam still baffling: TEPCO

The best defense against catastrophic storms: Mother Nature, say Stanford researchers

NASA, International Space Agencies Note Benefits of Space Station during Disasters on Earth

Rain no dampener for New Zealand cardboard cathedral

WATER WORLD
World's cheapest computer gets millions tinkering

Thyroid cancer risk for 2,000 Fukushima workers: TEPCO

Unusual material expands dramatically under pressure

Milikelvins drive droplet evaporation

WATER WORLD
Stanford researchers reveal great white sharks' fuel for oceanic voyages: liver oil

US says bombs dropped on Australia reef to avoid boats

Evolutionary changes could aid fisheries

Antibiotic-Resistant Bacteria Widespread in Hudson River, Study Finds

WATER WORLD
Russia blocks bid for Antarctic sanctuary: NGOs

Continuous satellite monitoring of ice sheets needed to better predict sea-level rise

Researchers Shed New Light on Supraglacial Lake Drainage

Scientists cast doubt on theory of what triggered Antarctic glaciation

WATER WORLD
Maize trade disruption could have global ramifications

Why crop rotation works

Irish Potato Famine-Causing Pathogen Even More Virulent Now

Driverless tractors till German high-tech farm

WATER WORLD
Earthquake rocks New Zealand's capital

Moderate earthquake rattles New Zealand capital

'Brown Ocean' Can Fuel Inland Tropical Cyclones

Some volcanoes 'scream' at ever-higher pitches until they blow their tops

WATER WORLD
Nigeria to withdraw some troops from Mali

Climate change to hit Volta Basin for energy, farming

A South Sudan moka? What else?

Madagascar villagers accuse army of mass killings

WATER WORLD
Archaeologist says he's uncovered King David's palace

Brain signal said to create inner 'voice' we hear even if we're silent

Genetic evolution seen in peoples living at high altitudes

China island centenarians claim secret of long life




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement