|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Barcelona, Spain (SPX) Mar 23, 2015
Submarine groundwater discharge (SGD) consists of a mixture of continental freshwater and seawater, which recirculates through the coastal aquifer. In addition to its importance in the water cycle, as a potentially exploitable water resource and a source of water for brackish coastal environments such as marshes and coastal lagoons, it also can serve as an important source of dissolved chemical compounds such as nutrients and trace and toxic metals. Now, a study led by researchers from the Institute of Environmental Science and Technology (ICTA) and the Department of Physics of the Universitat Autonoma de Barcelona (UAB) has been the first to calculate the magnitude of SGD into the Mediterranean Sea, as well as the flux of dissolved nutrients. The research, published in Proceedings of the National Academy of Sciences of the United States of America (PNAS), also included the participation of researchers from the Bar-Ilan University of Israel (BIU; Ramat-Gan). The study shows that the annual volume of SGD for the whole Mediterranean basin ranges from 30 to 500 billion cubic metres, which proves that this process is relevant at large scale and its discharge is similar or up to 15 times greater than that of river water inputs. The flux of nutrients associated with this discharge consists of an annual median of three million tonnes of nitrogen, twenty thousand of phosphorous, and three million of silica, which represent a magnitude of inorganic nutrients comparable to that of external sources traditionally considered in marine studies, such as the atmospheric deposition and riverine runoff. "The magnitude of SGD and fluxes of associated nutrients demonstrates their relevance in the biogeochemical cycles of the Mediterranean Sea, making it even more necessary to include this, until now, ignored process in future marine studies, both at coastal and global level. These fluxes could have a large influence in coastal environments, especially in areas with low availability of nutrients and in semiarid regions, such as the Mediterranean Sea," explains Valenti Rodellas, UAB researcher who led the study as part of his PhD thesis. "The entrance of inorganic nutrients associated to SGD can be particularly relevant for the marine ecosystems of coastal areas located further away from river mouths, since SGD may be the only continual source of inorganic dissolved compounds reaching the sea in such areas", explains Jordi Garcia-Orellana, UAB researcher and co-author of the study. Pere Masque, also co-author of the study, adds that, "in addition to nutrients, SGD can play a crucial role as a source of other dissolved compounds flowing into the Mediterranean Sea, as well as in all the oceans worldwide, such as carbon, iron and other micronutrients, given the magnitude of the calculated fluxes and the high concentration of these compounds in groundwater". To conduct the study, researchers used Ra-228, a natural radioactive tracer that is ideally suited for quantifying the submarine groundwater discharge into the sea at basin level. The application of this method required the participation in several oceanographic cruises in order to evaluate the distribution of Ra-228 throughout the water column of Mediterranean Sea.
Related Links Universitat Autonoma de Barcelona Water News - Science, Technology and Politics
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |