. | . |
Malaria Kills 21 People In Flood-Hit Somalia, Toll Climbs To 141
Mogadishu (AFP) Dec 11, 2006 At least 21 people have died in southern and central Somalia after an outbreak of malaria, sparked by heavy flooding, bringing the death toll to 141, officials said Monday. The patients, who included children, died over the past two weeks in two regions, where numerous waterborne diseases have been reported since torrential rains started pounding the country late October. "Some 11 people, most of them young children, have died as a result of malaria," said Mohamed Aweys, a health worker in Bariire township in Middle Shabelle region. "Many people here have contracted the disease because they do not have nets to keep away mosquitos teeming in flood waters," he told AFP. Local officials said 10 other children died in Buqaqable town, 90 kilometres (55 miles) southwest of the central town of Beledweyne, over the same period. "An outbreak of malaria in this region kills almost everyday," said Sheikh Murshid Sheikh Mustafa, the district commissioner for Buqaqable. "Over the last two weeks, at least 10 children have died and we fear that more will die in the coming days," he explained. Flooding in Somalia has displaced at least 336,000 people and affected nearly a million others, but humanitarian operations have been hampered by fears of an all-out war between the government and the Islamic militia. The new toll brings to at least 335 the number of people killed by floods in Ethiopia, Kenya and Somalia, all of which been hit by torrential rains not expected to end until next month. Damage in the three nations has been exacerbated by the fact that they were still recovering from a scorching drought that had parched soil across vast swathes of land, leaving the earth unable to absorb the rain water. The resultant displacement, cramped living conditions and lack of water and sanitation, means between 1.5 and 1.8 million people are at risk from diseases such as cholera, measles and malaria, aid agencies say.
Source: Agence France-Presse
related report
Genetic Map Offers New Tool For Malaria Research These differences lay the foundation for dissecting the functions of important parasite genes and for tracing the global spread of malaria. Led by scientists at the Harvard School of Public Health and the Broad Institute of MIT and Harvard, together with researchers in Senegal, the work has already unearthed novel genes that may underlie resistance to current drugs against the disease. "Malaria remains a significant threat to global public health, driven in part by the genetic changes in the parasite that causes the disease," said senior author Dyann Wirth, a professor and chairman of the department of immunology and infectious diseases at the Harvard School of Public Health and the co-director of the Broad Institute's Infectious Disease Initiative. "This study gives us one of the first looks at genetic variation across the entire malaria parasite genome - a critical step toward a comprehensive genetic tool for the malaria research community." Plasmodium falciparum - the deadliest of the four parasites that cause malaria in humans - kills one person every 30 seconds, mostly children living in Africa. Despite decades of research, the genetic changes that enable it to escape the body's natural defenses and to overcome malaria drugs remain largely unknown. To gain a broad picture of genetic variability - worldwide and genome-wide - the scientists analyzed more than 50 different P. falciparum samples from diverse geographic locations. This includes the complete genome sequencing of two well-studied samples as well as extensive DNA analyses of 16 additional isolates. The work is one of three large-scale studies of the parasite's DNA that appear together in Nature Genetics, and it represents a collaborative effort among Boston area researchers and a scientific team led by Souleymane Mboup, a professor at the Cheikh Anta Diop University in Senegal where malaria is endemic. "We are grateful for the contributions of our colleagues in Senegal. They are a crucial part of this collaboration," said Wirth. By comparing the DNA sequences to each other and to the P. falciparum genome sequenced in 2002, the researchers uncovered extensive differences, including ~ 47,000 single letter changes called single nucleotide polymorphisms (SNPs). This represents more than double the expected level of diversity in the parasite's DNA. Although there are probably many more SNPs to be found, this initial survey - like the recent HapMap project in humans - provides a launching point for future systematic efforts to identify parasite genes that are essential to malaria. "The roles of most of the malaria parasite's genes are still not known," said first author Sarah Volkman, a research scientist at the Harvard School of Public Health. "An important application of this new tool will be in pinpointing the genes that are vital to the development and spread of malaria." One of the tool's strengths is its ability to reveal evolutionary differences among parasites. This information can shed light on the genes responsible for malaria drug resistance - a major obstacle to adequate control of the disease. Using the genetic map to compare parasites exposed to different anti-malarial drugs, the scientists identified a novel region that is strongly implicated in resistance to the drug pyrimethamine, and also confirmed a region of the genome known to be involved in chloroquine drug resistance. "The same genetic principles used to study human evolution can provide important clues about malaria," said first author Pardis Sabeti, a postdoctoral fellow at the Broad Institute. "This tool has already yielded insights into the genetic changes that correlate with different drug treatments, pointing us to genes that may contribute to drug resistance." The map can also define the genetic landscapes of different parasite populations. Applying it to parasites from various continents, the scientists discovered greater DNA variability among P. falciparum samples from Africa relative to those from Asia and the Americas. This knowledge guides the selection of genetic markers to track the transmission of distinct parasites, particularly ones that are virulent or drug resistant. It also lays the groundwork for connecting parasite genes with traits that vary geographically and bolster malaria's foothold in many parts of the world. "Genomic tools have largely been applied to first-world diseases up to now. This project underscores the power and importance of applying them to the devastating diseases of the developing world," said Eric Lander, one of the study's authors and the director of the Broad Institute. "By joining forces among scientists in the U.S., Africa and elsewhere, it should be possible to rapidly reveal the genetic variation in malaria around the world. Knowing the enemy will be a crucial step in fighting it." Related Links The science and news of Epidemics on Earth Common PTSD Drug Is No More Effective Than Placebo San Francisco (SPX) Dec 04, 2006 Guanfacine, a medication commonly prescribed to alleviate symptoms of post-traumatic stress disorder, is no more effective than a placebo, according to a study led by researchers at the San Francisco VA Medical Center. "There was no benefit at all, and there were several adverse side effects," says lead author Thomas Neylan, MD, medical director of the PTSD treatment program at SFVAMC. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |