The research, published September 25th in Geophysical Research Letters, represents the first successful simulation of these wildfire-induced storms, known as pyrocumulonimbus clouds, within an Earth system model. Led by DRI scientist Ziming Ke, the study successfully reproduced the observed timing, height, and strength of the Creek Fire's thunderhead - one of the largest known pyrocumulonimbus clouds seen in the U.S., according to NASA. The model also replicated multiple thunderstorms produced by the 2021 Dixie Fire, which occurred under very different conditions. Accounting for the way that cloud development is aided by moisture lofted into the higher reaches of the atmosphere by terrain and winds is key to their findings.
"This work is a first-of-its-kind breakthrough in Earth system modeling," Ke said. "It not only demonstrates how extreme wildfire events can be studied within Earth system models, but also establishes DRI's growing capability in Earth system model development - a core strength that positions the institute to lead future advances in wildfire-climate science."
When a pyrocumulonimbus cloud forms, it injects smoke and moisture into the upper atmosphere at magnitudes comparable to those of small volcanic eruptions, impacting the way Earth's atmosphere receives and reflects sunlight. These fire aerosols can persist for months or longer, altering stratospheric composition. When transported to polar regions, they affect Antarctic ozone dynamics, modify clouds and albedo, and accelerate ice and snow melt, reshaping polar climate feedbacks. Scientists estimate that tens to hundreds of these storms occur globally each year, and that the trend of increasingly severe wildfires will only grow their numbers. Until now, failing to incorporate these storms into Earth system models has hindered our ability to understand this natural disturbance's impact on global climate.
The research team also included scientists from Lawrence Livermore National Laboratory, U.C. Irvine, and Pacific Northwest National Laboratory. Their breakthrough leveraged the Department of Energy's (DOE) Energy Exascale Earth System Model (E3SM) to successfully capture the complex interplay between wildfires and the atmosphere.
"Our team developed a novel wildfire-Earth system modeling framework that integrates high-resolution wildfire emissions, a one-dimensional plume-rise model, and fire-induced water vapor transport into DOE's cutting-edge Earth system model," Ke said. "This breakthrough advances high-resolution modeling of extreme hazards to improve national resilience and preparedness, and provides the framework for future exploration of these storms at regional and global scales within Earth system models."
Research Report:Simulating Pyrocumulonimbus Clouds Using a Multiscale Wildfire Simulation Framework
Related Links
Desert Research Institute
Forest and Wild Fires - News, Science and Technology
Subscribe Free To Our Daily Newsletters |
Subscribe Free To Our Daily Newsletters |